
NXApp, Summer 1994. Volume 1, Issue 3. Copyright ã1994 by NeXT Computer, Inc.    All Rights
Reserved.

Sneak Preview: The New Foundation Kit

written by NeXT Developer Publications

The Foundation Kit is a new set of Objective C classes that provides
useful primitive
object classes, and introduces several paradigms to avoid confusion in
common situations and introduce consistency across class hierarchies.

INTRODUCTION
The Foundation Kit defines a base layer of Objective C classes for OpenStepä. In
addition to providing useful primitive object classes, it introduces paradigms that
define functionality not covered by the Objective C language. The Foundation Kit
is designed with these goals in mind:
´ Provide a small set of basic utility classes
´ Make software development easier by introducing consistent conventions

 for things such as deallocation
´ Support Unicode strings, object persistence, and object distribution
´ Provide a level of operating system independence, to ensure portability
The Foundation Kit includes the root object class; classes representing basic data
types such as strings and byte arrays, and collections of other objects; and
classes representing system information such as dates and communication ports
between applications.
The Foundation Kit introduces several paradigms to avoid confusion in common
situations and to introduce a level of consistency across class hierarchies. This is

done with some standard policies, such as that for object ownership (that is,
who's responsible for disposing of objects), and with Objective C protocols like
NSEnumerator. These new paradigms reduce the number of special and
exceptional cases in the API, and allow you to code more efficiently by reusing
the same mechanisms with various kinds of objects.

Some of these design goals (especially the last one) are longer-term and haven't been
completely achieved in the first release of Foundation Kit. For example, although applications
can work with Unicode strings, there's no support for displaying text in Unicode's wide range of
characters or for getting Unicode input from the user.

FOUNDATION KIT CLASSES AND PROTOCOLS
The OpenStep class hierarchy is rooted in the Foundation Kit's NSObject class
(see Figure 7). The remainder of the Foundation Kit consists of several related
groups of classes as well as a few individuals. Most of the groups form what are
called class clustersÐabstract classes that work as umbrella interfaces to a
versatile set of private subclasses. NSString and NSMutableString, for example,
act as brokers for instances of various private subclasses optimized for different
kinds of storage needs. Depending on the method you use to create a string, an
instance of the appropriate optimized class will be returned to you. See ªClass
Clustersº for a full treatment of this concept.

F0.eps ,
Figure 7:    The Foundation Kit class inheritance hierarchy

The first group of classes handles object storage. They hold arrays of objects or
bytes, or store objects by key. The NSValue and NSNumber classes allow you to
store arrays of simple C data values in an NSArray or other storage object.
The next group of classes represents text strings and characters. The
NSCharacterSet classes represent various groupings of characters in the NSString
and NSScanner classes. The NSString classes represent text strings and provide
methods for searching, combining, and comparing strings. An NSScanner is used

to scan numbers and words from an NSString object.
NSAutoreleasePools are used to implement the delayed-release feature of the
Foundation Kit, as described in ªObject Ownership and Automatic Disposal.º
The NSDate and NSTimeZone classes store times and dates. They offer methods
for calculating dates and time differences, for displaying dates and times in many
formats, and for adjusting times and dates based on location in the world.
The Foundation Kit defines only a few protocols, the most significant of which is
the NSObject
protocol. It declares the methods that any object must implement to be
considered a ªfirst-classº object. The other protocols include NSCopying and
NSMutableCopying, which declare methods for making copies of objects. The two
separate protocols allow for making immutable or mutable copies of objects that
may or may not be mutable.

Final determination of which classes are public and private hasn't yet been made. You may see
header files for other classes in the Foundation Kit header file directory and some classes listed
here may not appear in the header files.

OBJECT OWNERSHIP AND AUTOMATIC DISPOSAL
Note As a preface to this discussion, note that in Foundation you implement a
dealloc method instead of a free method. dealloc is always invoked indirectly
through release, which you use in place of free. So, you speak of ªreleasingº an
object instead of ªfreeingº it. These terms and
methods will be introduced in a new Objective C document.
In an Objective C program objects are constantly creating and disposing of other
objects. Much
of the time an object creates things for private use and can dispose of them as it
needs. However, when an object passes something to another object through a
method invocation, the lines of ownershipÐand responsibility for disposalÐblur.
Suppose, for example, that you have a Gadget object that contains a number of
Sprocket objects, which another object accesses with this method:

± (NSArray *)sprockets

This declaration says nothing about who should release the returned array. If the
Gadget object returned an instance variable, it's responsible; if the Gadget
created an array and returned it, the recipient is responsible. This problem
applies both to objects returned by a method and objects passed in as arguments
to a method.
Ideally a body of code should never be concerned with releasing something it
didn't create. The Foundation Kit therefore sets this policy: If you create an object
you alone are responsible for releasing it. If you didn't create the object, you
don't own it and shouldn't release it.
When you write a method that creates and returns an object, then, that method
is responsible
for releasing the object. It's clearly not fruitful to dispose of an object before the
recipient of the object gets it, however. What's needed is a way to mark an object
for later release, so that it will be properly disposed of after the recipient has had
a chance to use it. The Foundation Kit provides just such a method.

Marking objects for disposal
The autorelease method, defined by NSObject, marks the receiver for later
release. By autoreleasing an objectÐthat is, by sending it an autorelease
messageÐyou declare that you don't need the object to exist beyond the scope
you sent autorelease in. When your code completely finishes executing and
control returns to the application object (that is, at the end of the event loop), the
application object releases the object. The sprockets methods above could be
implemented in this way:
± (NSArray *)sprockets
{

NSArray *array;

array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];

return [array autorelease];
}

When another method gets the array of Sprockets, that method can assume that
the array will be disposed of when it's no longer needed, but can still be safely
used anywhere within its scope (with certain exceptions; see ªValidity of Shared
Objectsº). It can even return the array to its invoker, since the application object
defines the bottom of the call stack for your code. The autorelease method thus
allows every object to use other objects without worrying about disposing of
them.
Note Just as it's an error to release an object after it's already been deallocated,
it's an error to send so many autorelease messages that the object would later
be released after it had already been deallocated. You should send release or
autorelease to an object only as many times as are allowed by its creation (one)
plus the number of retain messages you have sent it (retain messages are
described in the next section).

Retaining objects
There are times when you don't want a received object to be disposed of; for
example, you may need to cache the object in an instance variable. In this case,
only you know when the object is no longer needed, so you need the power to
ensure that the object is not disposed of while you are still using it. You do this
with the retain method, which stays the effect of a pending autorelease (or
preempts a later release or autorelease message). By retaining an object you
ensure that it won't be deallocated until you're done with it. For example, if your
object allows its main Sprocket to be set, you might want to retain that Sprocket
like this:
± (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
return;

}

Now, setMainSprocket: might get invoked with a Sprocket that the invoker

intends to keep around, which means your object would be sharing the Sprocket
with that other object. If that object changes the Sprocket, your object's main
Sprocket changes. You might want that, but if your Gadget needs to have its own
Sprocket the method should make a private copy:
± (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket copy]; /* Get a private copy. */
return;

}

Note that both of these methods autorelease the original main Sprocket, so they
don't need to check that the original main Sprocket and the new one are the
same. If they simply released the original when it was the same as the new one,
that Sprocket would be released and possibly deallocated, causing an error as
soon as it was retained or copied. Although they could store the old main
Sprocket and release it later, that kind of code tends to be slightly more complex.
For example:
± (void)setMainSprocket:(Sprocket *)newSprocket
{

Sprocket *oldSprocket = mainSprocket;
mainSprocket = [newSprocket copy];
[oldSprocket release];
return;

}

Validity of shared objects
The Foundation Kit's ownership policy limits itself to the question of when you
have to dispose of an object; it doesn't specify that any object received in a
method must remain valid throughout that method's scope. A received object
nearly always becomes invalid when its owner is released, and usually becomes
invalid when its owner reassigns the instance variable holding that object. Any
method other than release that immediately disposes of an object is
documented as doing so.

For example, if you ask for an object's main Sprocket and release the object, you
have to consider the main Sprocket gone, because it belonged to the object.
Similarly, if you ask for the main Sprocket and then send setMainSprocket: you
can't assume that the Sprocket you received remains valid:
Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [myObject mainSprocket];

/* If this releases the original Sprocket... */
[myObject setMainSprocket:newMainSprocket];

/* ...then this causes the application to crash. */
[oldMainSprocket anyMessage];

setMainSprocket: may release the object's original main Sprocket, possibly
rendering it invalid. Sending any message to the invalid Sprocket would then
cause your application to crash. If you need to use an object after disposing of its
owner or rendering it invalid by some other means, you can retain and
autorelease it before sending the message that would invalidate it:
Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [[[myObject mainSprocket] retain] autorelease];
[myObject setMainSprocket:newMainSprocket];
[oldMainSprocket anyMessage];

Retaining and autoreleasing oldMainSprocket guarantees that it will remain
valid throughout your scope, even though its owner may release it when you
send setMainSprocket:.

Summary
Now that the concepts behind the Foundation Kit's object ownership policy have
been introduced, they can be expressed as a short list of rules:
´ If you allocate, copy, or retain an object, you are responsible for releasing the

newly created object with release or autorelease. Any other time you
receive an object, you're not responsible for releasing it.

´ A received object is normally guaranteed to remain valid within the method it
was received in. That method may also safely return the object to its invoker.

´ If you need to store a received object in an instance variable, you must retain
or copy it.

´ Use retain and autorelease when needed to prevent an object from being
invalidated as a normal side-effect of a message.

CLASS CLUSTERS
The Foundation Kit's architecture makes extensive use of class clusters. Class
clusters group a number of private, concrete subclasses under a public, abstract
superclass. The grouping of classes in this way simplifies the publicly visible
architecture of an object-oriented kit without reducing its functional richness.

Simple concept, complex interface
To illustrate the class cluster architecture and its benefits, consider the problem
of constructing a class hierarchy that defines objects to store numbers of
different types (chars, ints, floats, doubles). Since numbers of different types
have many features in common (they can be converted from one type to another
and can be represented as strings, for example), they could be represented by a
single class. However, their storage requirements differ, so it's inefficient to
represent them all by the same class. This suggests the architecture shown in
Figure 8.

F2_SimpleHeirarchy.eps ¬
Figure 8:    A simple hierarchy for number classes

Number is the abstract superclass that declares in its methods the operations
common to its subclasses. However, it doesn't declare an instance variable to
store a number. The subclasses declare such instance variables and share in the
programmatic interface declared by Number.

So far, this design is relatively simple. However, if the commonly used
modifications of these basic C types are taken into account, the diagram looks
more like the one in Figure 9.

F3_CompleteHeirarchy.eps ¬
Figure 9:    A more complete number class hierarchy

The simple conceptÐcreating a class to hold number valuesÐcan easily burgeon
to over a dozen classes. The class cluster architecture presents a design that
reflects the simplicity of the concept.

Simple concept, simple interface
Applying the class cluster design to this problem yields the hierarchy shown in
Figure 10 (private classes are in gray).
881924_F4_ClassCluster.eps ¬
Figure 10:    Class cluster architecture applied to number classes

Users of this hierarchy see only one public class, Number, so how is it possible to
allocate instances of the proper subclass? The answer is in the way the abstract
superclass handles instantiation.

Creating instances
The abstract superclass in a class cluster must declare methods for creating
instances of its private subclasses. It's the superclass's responsibility to dispense
an object of the proper subclass based on the creation method that you
invokeÐyou don't, and can't, choose the class of the instance.
In the Foundation Kit, you generally create an object by invoking a +
className... method or the alloc... and init... methods. Taking the Foundation
Kit's NSNumber class as an example, you could send these messages to create

number objects:
NSNumber *aChar = [NSNumber numberWithChar:'a'];
NSNumber *anInt = [NSNumber numberWithInt:1];
NSNumber *aFloat = [NSNumber numberWithFloat:1.0];
NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

(This style of instantiation creates objects that will be deallocated
automaticallyÐsee ªObject Ownership and Automatic Disposalº earlier in this
article for more information. Many classes also provide the standard alloc... and
init... methods to create objects that require you to manage their deallocation.)
Each object returnedÐaChar, anInt, aFloat, and aDoubleÐmay belong to a
different private subclass (and in fact does). Although each object's class
membership is hidden, its interface is public, being the interface declared by the
abstract superclass, NSNumber.
You could consider the aChar, anInt, aFloat, and aDouble objects to be instances
of the NSNumber class, since they're created by NSNumber class methods and
accessed through instance methods declared by NSNumber. However, this isn't
precisely correct, as explained above, so this documentation uses a shorthandÐa
lowercase version of the class nameÐto refer to such objects. Thus, the aChar,
anInt, aFloat, and aDouble objects are called number objects.

Class clusters with multiple public superclasses
In the example above, one abstract public class declares the interface for
multiple private subclasses. This is a class cluster in the purest sense. It's also
possible, and often desirable, to have two (or possibly more) abstract public
classes that declare the interface for the cluster. This is evident in the Foundation
Kit, which includes the clusters listed in Figure 11.

Class cluster Public superclasses Name of instance
NSData NSData data object

NSMutableData mutable data object
NSArray NSArray array object

NSMutableArray mutable array object
NSDictionary NSDictionary dictionary object

NSMutableDictionary mutable dictionary object
NSString NSString string object

NSMutableString mutable string object
NSValue NSValue value object

NSNumber number object
Figure 11:    Abstract public classes for class clusters

Other clusters of this type also exist, but these clearly illustrate how two abstract
nodes cooperate in declaring the programmatic interface to a class cluster. In
each of these clusters, one public node declares methods that all cluster objects
can respond to, and the other node declares methods that are appropriate only
for cluster objects that allow their contents to be modified.
This factoring of the cluster's interface helps make an object-oriented kit's
programmatic interface more expressive. For example, imagine a Book object
that declares this method:
- (NSString *)title;

The Book object could return its own instance variable or create a new string
object and return thatÐit doesn't matter. It's clear from this declaration that the
returned string can't be modified. Any attempt to modify the returned object will
elicit a compiler warning.

Creating subclasses within a class cluster
The class cluster architecture involves a trade-off between simplicity and
extensibility: Having a few public classes stand in for a multitude of private ones
makes it easier to learn and use the classes in a kit but somewhat harder to
create subclasses within any of the clusters. However, if it's rarely necessary to
create a subclass, then the cluster architecture is clearly beneficial. Clusters are
used in the Foundation Kit in just these situations.
If you find that a cluster doesn't provide the functionality your program needs,
then a subclass may be in order. For example, imagine that you want to create an
array object whose storage is file-based rather than memory-based as in the
NSArray class cluster. Since you are changing the underlying storage mechanism
of the class, you'd have to create a subclass.

On the other hand, in some cases it might be sufficient (and easier) to define a
class that embeds within it an object from the cluster. Let's say that your
program needs to be alerted whenever some data is modified. In this case,
creating a simple cover for a data object that the Foundation Kit defines may be
the best approach. An object of this class could intervene in messages that
modify the data, intercepting the messages, acting on them, and then forwarding
them to the embedded data object.
In summary, if you need to manage your object's storage, create a true subclass.
Otherwise, create a composite object, one that embeds a standard Foundation Kit
object in an object of your own design. The sections below give more detail on
these two approaches.

A true subclass
A new class that you create within a class cluster must:
· Be a subclass of the cluster's abstract superclass
· Declare its own storage
· Override the superclass's primitive methods
Since the cluster's abstract superclass is the only publicly visible node in the
cluster's hierarchy, the first point is obvious. This implies that the new subclass
will inherit the cluster's interface but no instance variables, since the abstract
superclass declares none. Thus the second point: The subclass must declare any
instance variables it needs. Finally, the subclass must override any method it
inherits that directly accesses an object's instance variables. Such methods are
called primitive methods.
A class's primitive methods form the basis for its interface. For example, take the
NSArray class, which declares the interface to objects that manage arrays of
objects. In concept, an array stores a number of data items, each of which is
accessible by index. NSArray expresses this abstract notion through its two
primitive methods, count and objectAtIndex:. With these methods as a base,
other methodsÐderived methodsÐcan be implemented, for example:

´ lastObject Find the last object by sending the array object this message:
[self objectAtIndex:[self count] ±1]

´ containsObject Find an object by repeatedly sending the array object an
objectAtIndex: message, each time incrementing the index until all objects
in the array have been tested

The division of an interface between primitive and derived methods makes
creating subclasses easier. Your subclass must override inherited primitives, but
having done so can be sure that all derived methods that it inherits will operate
properly.
The primitive-derived distinction applies to the interface of a fully initialized
object. The question of how init... methods should be handled in a subclass also
needs to be addressed.
In general, a cluster's abstract superclass declares a number of init... and +
className methods. As described in ªCreating Instancesº earlier in this article,
the abstract class decides which
concrete subclass to instantiate based on your choice of init... or + className
method. You can consider that the abstract class declares these methods for the
convenience of the subclass.
Since the abstract class has no instance variables, it has no need of initialization
methods.
Your subclass should declare its own init... (if it needs to initialize its instance
variables) and
possibly + className methods. It should not rely on any of those that it inherits.
To maintain its link in the initialization chain, it should invoke its superclass's
designated initializer within
its own designated initializer method. (See the NEXTSTEP Object-Oriented
Programming and the Objective C Language manual for a discussion of the
designated initializers.) Within a class
cluster, the designated initializer of the abstract superclass is always init.

True subclasses: an example
An example will help clarify the foregoing discussion. Let's say that you want to

create a subclass of NSArray, named MonthArray, that returns the name of a
month given its index position. However, a MonthArray object won't actually
store the array of month names as an instance variable. Instead, the method that
returns a name given an index position (objectAtIndex:) will return constant
strings. Thus, only 12 string objects will be allocated, no matter how many
MonthArray objects exist in an application.
The MonthArray class is declared as:
#import <NSFoundationKit/NSFoundationKit.h>
@interface MonthArray : NSArray
{
}

+ array;
- (unsigned)count;
- objectAtIndex:(unsigned)index;

@end

Note that the MonthArray class doesn't declare an init... method since it has no
instance variables to initialize. For convenience, it declares the array method so
that users can easily create autoreleased instances. The count and
objectAtIndex: methods simply cover the inherited primitive methods, as
described above.
The implementation of the MonthArray class looks like this:
#import "MonthArray.h"

@implementation MonthArray

static NSString *Months[] = { @"January", @"February", @"March",
@"April", @"May", @"June", @"July", @"August", @"September",
@"October", @"November", @"December" };

+ array
{

return [[[self alloc] init] autorelease];

}

- (unsigned)count
{

return (sizeof(Months) / sizeof(Months[0]));
}

- objectAtIndex:(unsigned)index
{

if (index < [self count]) {
return Months[index];

}
NSRaise(NSRangeException, @"*** %s: index (%d) beyond bounds

0 to %d)", sel_getName(_cmd), index, [self count] - 1);
return nil; /* Should never get here */

}

@end

Since MonthArray overrides the inherited primitive methods, the derived
methods that it inherits will work properly without being overridden. NSArray's
lastObject, containsObject:, sortedArrayUsingSelector:,
objectEnumerator, and other methods work without problems for MonthArray
objects.

A composite object
By embedding a private cluster object in an object of your own design, you
create a composite object. This composite object can rely on the cluster object
for its basic functionality, intercepting only messages that it wants to handle in
some particular way. Using this approach reduces the amount of code you must
write and lets you take advantage of the tested code provided by the Foundation
Kit.
Figure 12 shows how one might view a composite object:

F5_CompositeObj.eps ¬

Figure 12:    Embedding a cluster object
The composite object must declare itself to be a subclass of the cluster's abstract
node. As a subclass, it must override the superclass's primitive methods. It can
also override derived methods, but this isn't necessary since the derived
methods work through the primitive ones.
Using NSArray's count method as an example, the intervening object's
implementation of a method it overrides can be as simple as:
- (unsigned)count
{

return [embeddedObject count];
}

However, your object could put code for its own purposes in the implementation
of any method it overrides.

An intervening object: an example
To illustrate the use of an intervening object, imagine you want a mutable array
object that tests changes against some validation criteria before allowing any
modification to the array's contents. The example that follows describes a class
called ValidatingArray, which contains a standard mutable array object.
ValidatingArray overrides all of the primitive methods declared in its
superclasses, NSArray and NSMutableArray. It also declares the array,
validatingArray, and init methods, which can be used to create and initialize an
instance:
#import <foundation/foundation.h>

@interface ValidatingArray : NSMutableArray
{

NSMutableArray *embeddedArray;
}

+ array;
+ validatingArray;
- init;
- (unsigned)count;

- objectAtIndex:(unsigned)index;
- (void)addObject:object;
- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
- (void)removeLastObject;
- (void)insertObject:object atIndex:(unsigned)index;
- (void)removeObjectAtIndex:(unsigned)index;

@end

The implementation file shows how, in a ValidatingArray's init method, the
embedded object is created and assigned to the embeddedArray variable.
Messages that simply access the array but don't modify its contents are relayed
to the embedded object. Messages that could change the contents are
scrutinized (here in pseudocode) and relayed only if they pass the hypothetical
validation test.
#import "ValidatingArray.h"

@implementation ValidatingArray

- init
{

embeddedArray = [[NSMutableArray array] retain];
return self;

}

+ array
{

return [self validatingArray];
}

+ validatingArray
{

return [[[self alloc] init] autorelease];
}

- (unsigned)count
{

return [embeddedArray count];

}

- objectAtIndex:(unsigned)index
{

return [embeddedArray objectAtIndex:index];
}

- (void)addObject:object
{

if (/* modification is valid */) {
[embeddedArray addObject:object];

}
}

- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
{

if (/* modification is valid */) {
[embeddedArray addObject:object];

}
}
- (void)removeLastObject;
{

if (/* modification is valid */) {
[embeddedArray removeLastObject];

}
}
- (void)insertObject:object atIndex:(unsigned)index;
{

if (/* modification is valid */) {
[embeddedArray insertObject:object atIndex:index];

}
}
- (void)removeObjectAtIndex:(unsigned)index;
{

if (/* modification is valid */) {
[embeddedArray removeObjectAtIndex:index];

}

The Developer Publications group writes all of NeXT's developer-related publications and

creates examples for NEXTSTEP kits and frameworks. In addition, the group works with the
software engineers to help ensure high-quality, consistent, and clean APIs and user interfaces.
They can be reached by e-mail at DevPubs_feedback@next.com; they welcome comments
and suggestions on this and all other NEXTSTEP developer documentation.
__
Next Article NeXTanswer #1998 A Methodology for Message-Based Undo and
Animation
Previous article NeXTanswer #2002 An Introduction to the Enterprise
Objects Framework
Table of contents
http://www.next.com/HotNews/Journal/NXapp/Summer1994/ContentsSummer1994.html

